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CHARACTERIZATION OF OPTIMAL LES IN TURBULENT CHANNEL
FLOW
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Department of Theoretical and Applied Mechanics
University of Illinois at Urbana-Champaign
Urbana, IL 61801 USA

Abstract. The application of large eddy simulation (LES) to wall-bounded turbu-
lent flows has be hindered by the failure of current subgrid models in the strongly
inhomogeneous region very near the wall. This is the LES wall modeling problem.
To address this a new modeling approach called optimal LES modeling is applied
to a turbulent channel flow. Ideal LES is an LES evolution that is guaranteed to
produce correct statistics and accurate short-time dynamics, and optimal LES is a
minimum error approximation to it. By constructing optimal models that produce
correct a priori estimates of important statistical quantities, it is shown that for
inhomogeneous flows, the subgrid model must represent Reynolds stress spatial
transport, in addition to transfer to small scales. Resulting models are found to
perform particularly well in LES.

1. Introduction

Large eddy simulation (LES) is a promising simulation technique in which only
the large scales of a turbulent flow are simulated and the effects of the small
scales are modeled. A variety of subgrid models have been developed, and us-
ing these models, LES has been successfully applied in a variety of flows (see
Lesieur & M6tais, 1996; and Meneveau and Katz, 2000, for reviews). Unfortu-
nately, the near-wall region of a wall-bounded turbulent flow causes difficulties
for LES, primarily due to the strong inhomogeneity of the turbulence in this re-
gion, which results in a violation of the subgrid homogeneity and isotropy on
which most models are predicated. In essence, there is "large-scale" turbulence
that is actually smaller than the filter scale.

A new approach to large eddy simulation model formulation (optimal LES)
has been developed (Langford and Moser, 1999), which does not rely on subgrid
homogeneity or isotropy. Optimal LES is the formal approximation of what we
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call the "ideal LES," which is the best possible deterministic LES evolution. In
this paper, the optimal LES technique is applied to the turbulent flow in a chan-
nel, to begin to address the problem of near-wall LES modeling. In the following
subsections the optimal LES approach will be briefly described.

1.1. FILTERING AND IDEAL LES

The large scales to be simulated in an LES are defined through a spatial filter
denoted 7. For the filter to be useful in the LES context, it cannot be invertible
(Langford and Moser, 1999). That is, it must discard information, so that the (for-
mally infinite-dimensional) space of Navier-Stokes solutions will be mapped to a
smaller-dimensional space that can be practically represented on a computer. If an
invertible filter were used, the dynamics of the filtered system would be identical
to the dynamics of the unfiltered system; only the variables describing it would be
different. Often the explicit filter used in an LES is invertible (e.g. Gaussian or top-
hat), but the numerical discretization (e.g. Fourier truncation or point sampling)
invariably introduces non-invertability. In this case we include the discretization
as part of the filter.

With an uninvertible filter, the LES state information (the large-scale field) is
insufficient to determine either the unfiltered field or the evolution of the filtered
field; thus the need for a model. There are in general many possible evolutions
of a given filtered field, depending which of an infinite number of subgrid fields
is present. In the absence of subgrid information, the large-scale evolution can be
considered to be stochastic, and an intuitively reasonable LES evolution would be
the average of all the possible large-scale evolutions. This is written mathemati-
cally as the conditional average:

dw /du~
= \ d i (=)

where the LES field is w, and u is a real turbulent field. It has been shown (Lang-
ford and Moser, 1999) that this is the unique LES evolution that guarantees accu-
rate one-time statistics and minimizes error of the large-scale dynamics. Because
this is all one could wish for in an LES, this evolution is called ideal LES.

It is customary to write the LES equations as the Navier-Stokes operators
operating on the filtered field:

____ ~ 1 O2
•i

aii _ Oiiij l• + i + Mi, (2)
5T Oxj -Oxi Re OxjOxj

where

OTij• 3

MA --- + Ci, 'iUij -- i, (3)
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and Ci is a term that arises when the filter does not commute with spatial dif-
ferentiation. The ideal subgrid model (m) for the the subgrid term (M) is then
written:

m(w) = KM(u) ii = w), (4)

1.2. OPTIMAL LES

The ideal LES defined above has all the features one could wish for in an LES
model, but unfortunately it cannot be determined directly. The statistical informa-
tion embodied in the conditional average of the ideal LES is so tremendous that
it is unlikely that the ideal model for a given flow or filter could ever be found
exactly. Still, one can approximate the ideal model, and indeed, subgrid model-
ing can be considered to be the problem of approximating the conditional average
that defines the ideal model. The term optimal LES is used to describe formula-
tions that most closely approximate ideal LES within some class. Optimal models
are defined using stochastic estimation, as originally proposed by Adrian (1990).
Stochastic estimation is a well-established method for approximating conditional
averages (Adrian, 1977; Adrian and Moin, 1988; Adrian et al., 1989).

In stochastic estimation, a vector of random fields Y is approximated linearly
in terms of a vector of "event" fields E(x). The stochastic estimate is then written:

yi W) = (Yi) + fV Lij (x, x1) E'j(x') dx', (5)

where (.) is the average and Y' = Y - (Y).
The estimation kernel Lij is determined from the two-point cross correlations

of E'(x) and Y' from:

(Ei(x')Y(W) JLikX, X") (Ei(X) Ek (x")) dx", (6)

for all i, j and x'. Nonlinear estimates are obtained by including nonlinear quan-
tities as part of of the event vector.

In what follows, optimal LES models are devised for the turbulent channel
flow using stochastic estimation to approximate the ideal model. In Section 2, the
the channel flow and subgrid term are characterized, and two optimal models are
described in Section 3 and Section 4. Finally, concluding remarks are provided in
Section 5.

2. LES of Turbulent Channel Flow

Optimal LES requires as input the two-point correlations that appear in (6). The
correlation data was determined from the direct numerical simulation data of
Moser et al (1999), at Re, = 590.
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Figure 1. Magnitude of the subgrid force; (a) subgrid contribution to mean Reynolds
stress (- - - -) and total Reynolds stress (solid); and (b) mean-square subgrid force fluctuations,
normalized by mean-square velocity time derivative fluctuations.

For simplicity we consider a Fourier cut-off filter in the homogeneous direc-
tions parallel to the wall. The cut-off wavenumbers in the streamwise and span-
wise directions are k.,h = 16 and kzh = 32, where h is the channel half-width.
This results in an LES representation with 32 modes in the filtered directions,
compared to 384 in the DNS. The LES grid spacing is then 116 and 58 wall units
in the streamwise and spanwise directions respectively. This is a coarse filter for
this flow, which results in a significant model term, as shown in Figure 1. The
model terms accounts for as much as 70% of a9ul/at near the wall and 30% of
the mean Reynolds stress. This is representative of the high-Reynolds number
wall modeling problem, but with such a large contribution to Reynolds stress,
Smagorinsky-based subgrid models must fail (Jim6nez and Moser, 1999).

One further complication that arises due to the inhomogeneity in the chan-
nel flow is that large quantities of statistical data are required to represent the
two-point correlation in the inhomogeneous y direction (Balachandar and Najjar,
2000); more statistical samples than are available from the DNS. To reduce the
data required, we only consider estimates that are local in y, though this intro-
duces limitations on the veracity of the resulting models (Volker, 2000).

3. Optimal LES with Directly Estimated Subgrid Terms

Perhaps the most straight-forward way to formulate an optimal LES of the channel
flow is to directly estimate the fluctuating subgrid force in terms of the velocity
and its y derivatives. In this case the estimate reads

mi(x, y, z) = (MA) + j Lij(x - x', y, z - z')Ej(x', y, z') dx' dz' (7)

where the integrals are in x and z only, since the estimates are local in y. This
local direct estimate of the subgrid force has been used as a model in an LES.
Some representative results are shown in Figure 2. Clearly, the optimal model has
not done a particularly good job. The mean velocity is in poor agreement with
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Figure 2. LES results in the channel at Re, = 590; (a) mean velocity profiles, and (b) rms
streamwise velocity. Shown are the data from the LES (- ), DNS ( . ) and filtered DNS

the DNS, primarily because the wall shear stress (Cf) is over predicted by 11%.
The rms streamwise velocity near the wall is also over-predicted compared to the
filtered DNS quantity.

The reason for this poor performance can be found by examining the in-
terchange of energy between the resolved and subgrid scales. This is given by
(uiMi), which is plotted in Figure 3. Note that near the wall (y+ < 10), this
quantity is positive, indicating energy transfer into the resolved scales. Because of
the linearity of the model, this leads to exponential growth of resolved scale fluctu-
ations, until some other effect limits that growth (e.g. nonlinearity). However, this
energy transfer term is suggestive of transport in the y direction as observed by
Hdiertel & Kleiser (1998). In their analysis, the subgrid energy transfer is rewrit-
ten:

- TiJ \ O(i0iij-j) (
( iMi) U = . - TO (8)

where the first term on the right-hand side represents subgrid transport in y and the
second term represents local energy transfer between resolved and subgrid scales
(subgrid dissipation for short). These contributions are also shown in Figure 3.
Note that the transport term is responsible for the near-wall peak in (fiiMi). The
subgrid dissipation term is negative near the wall, though there is a region of true
energy transfer to resolved scales farther from the wall.

Since wi is one of the estimation event variables, the quantity (wiMi) is pre-
dicted exactly by the optimal model, in the a priori sense. But, because the es-
timates are local in y, they do not correctly represent the transport component
of this term. To represent the subgrid transport and dissipation terms exactly in
the a prior sense, we must construct the estimates such that (ftirij) and (SijTij)
are recovered (Volker, 2000). Taking advantage of homogeneity in the x and z
directions, this can be accomplished by writing Mi as

whee -OTil OD-i
Mi = Pi + Oxi where Pi iOXl x3 7i Ti2, (9)
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Figure 3. Contributions to the transfer of energy from the resolved scales (left); total energy trans-
fer ( ), subgrid dissipation (- - -), subgrid transport ( .... -). Also, (right) contributions
of pi and -i to subgrid energy transfer computed a posteriori from LES realizations (black), and a
priori from DNS (grey); (Uipi) (- ), -- ("YiaUi/OX2) (- - -) (aYiUi/OX2 ) (- - -. -)

and estimating pi and -yi in terms of ui and Oui/Oy. The total subgrid energy
transfer then becomes

(uiM) = (uipj) + ui±- (Uipi) - (Yii /) +K (10)

(Uim________ = Up)+( 0X X 9X2

dissipation transport

where each of the terms on the right hand side are represented exactly a priori.
The a priori contributions of the individual terms in (10) to the total subgrid

energy transfer are shown in Figure 3. Note that it is the dissipation term involving
-y that is responsible for the augmentation of energy in the resolved scales. Because
of the structure of this term, it will not produce unchecked exponential growth, as
occurs when M is estimated directly.

4. Optimal LES with Subgrid Transport Estimated

An LES based on the local estimation of p and -y with event data consisting of
the velocities and their y derivatives was performed. The results are shown in
Figure 4 for mean and rms velocities. The difficulties with the mean velocity,
and over-prediction of Cf are now gone. For the rms velocities, the LES are now
much closer to the values from the filtered DNS, though there are still some minor
discrepancies. A variety of other statistical quantities, including spectra and two-
point correlations are in reasonably good agreement with those of the filtered DNS
(Volker, 2000).

Given the apparent importance of the energy transfer and transport terms, the a
posteriori prediction of these quantities in the LES are of some importance. They
are shown in black in Figure 3. The agreement with the a priori results (grey) is
reasonably good, suggesting that ensuring that a model is a priori accurate of for
these quantities will lead to reasonable predictions.
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Figure 4. Channel LES using optimal estimation of p and -y (see (9)); (a) mean velocity profile,
(b) rms streamwise velocity fluctuations, Urms, (c) rms wall-normal velocity fluctuations, Vrins, and
(d) rms spanwise velocity fluctuations, Wrins. Shown are data from the LES (-), the DNS
(-- -) and the filtered DNS (- - -.. ).

5. Discussion and Conclusions

In both isotropic turbulence (Langford, 2000) and the channel flow, a properly
constructed optimal LES model produces very good simulations. But, the expe-
rience with the channel flow suggests that what makes a "properly constructed"
optimal model is not necessarily obvious. What seems to be important is that the
optimal models a priori reproduce essential statistical properties of the filtered
turbulence, such as the "dissipation" of resolved scale energy (i.e. transfer to sub-
grid scales) and the subgrid contribution to energy transport. The optimal models
actually a priori represent more than just these energy dynamic terms. For exam-
ple in isotropic turbulence, they a priori represent the dynamics of the two-point
correlation tensor (Langford and Moser, 1999).

In the channel, a global linear optimal model would also reproduce all subgrid
contributions to the two-point correlation dynamics. However, we were not able
to construct a global estimate, because of the limited statistical data available. The
estimates we built, were designed to represent the energy transport term, as well
as the dissipation, but they also reproduce the subgrid contribution to transport
and dissipation terms in the resolved-scale Reynolds stress transport equations.
Only the velocity-pressure-gradient term in the Reynolds stress equations is not
reproduced a priori. We speculate that a model that also reproduces this term
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would further improve LES performance, and that a global model that reproduces
2-point correlation dynamics would do even better.

The optimal models developed here rely on extensive correlation data that we
obtained from DNS. Clearly, these models would not be practical if such detailed
data were required for each flow in which one wishes to perform an LES. It is
thus necessary to generalize models such as those devised here to be applicable in
a broad range of applications.
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